Sunday, 10 October 2021

Solid Mechanics

 ๐Ÿ‘‰Plane having principal stress has no tangential stress.

๐Ÿ‘‰Mutually perpendicular planes are 180 degree apart in Mohr circle and have numerically equal value of shear stress.

๐Ÿ‘‰Maximum shear stress = radius of Mohr's circle

๐Ÿ‘‰         Theory of Failure                                               Also Known as  

       Maximum principal stress theory             Rankine theory, Lame's theory, Maximum stress theory

        Maximum principal strain theory                             St. Venant theory

           Maximum shear stress theory                   Tresca theory, Guest theory, Columb theory

          Maximum strain energy theory                              Beltrami Haigh theory

      Maximum shear strain energy theory                 Distortion energy theory, Von-Mises theory

๐Ÿ‘‰ Bending Equation 

                                  M/I = ฯƒ/y  = E/R

where, M = Bending Moment

           ฯƒ  = Bending stress

           I =  Moment of inertia

          y = Distance of the fibre from Neutral axis

         R = Radius of curvature

         E = young's modulus of elasticity

๐Ÿ‘‰ Torsion Equation:

                      T/Ip = ฯ„/r = ฯ„max/R  = N.ฮธ/l

๐Ÿ‘‰ Strain energy per unit volume = 1/2 x shear stress x shear strain

๐Ÿ‘‰ Strain energy in torsion = 1/2 x T x ฮธ

๐Ÿ‘‰  For Brittle materials, Normal stress theory gives best result

๐Ÿ‘‰ For ductile material maximum shear stress theory is applicable.


                                                                Happy Learning

2 comments:

  1. Your website is very informative and Articles are very good.
    Billing Engineering Course

    ReplyDelete
  2. SOLIDWORKS India offers SOLIDWORKS Flow Simulation which is an intuitive Computational Fluid Dynamics (CFD) arrangement implanted within SOLIDWORKS 3D CAD that empowers you to rapidly and effectively simulate liquid and gas move through and around your designs to calculate item execution and capacities.
    Please Visit For More Information :MSDFacilitators

    ReplyDelete